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Andreev interferometry as a probe of superconducting phase correlations
in the pseudogap regime of the cuprates

Daniel E. Sheehy, Paul M. Goldbarf, Jorg Schmaliarf, and Ali Yazdant
Department of Physics and Materials Research Laboratory, University of lllinois at Urbana-Champaign, Urbana, lllinois 61801
(Received 4 January 2000

Andreev interferometry—the sensitivity of the tunneling current to spatial variations in the local supercon-
ducting order at an interface—is proposed as a probe of the spatial structure of the phase correlations in the
pseudogap state of the cuprate superconductors. To demonstrate this idea theoretically, a simple tunneling
model is considered, via which the tunneling current is related to the equilibrium phase-phase correlator in the
pseudogap state. These considerations suggest that measurement of the low-voltage conductance through
mesoscopic contacts of varying areas provides a scheme for accessing phase-phase correlation information. For
illustrative purposes, quantitative predictions are made for a model of the pseudogap state in which the phase
(but not the amplitudeof the superconducting order varies randomly, and does so with correlations consistent
with certain proposed pictures of the pseudogap state.

[. INTRODUCTION for vortex rearrangement, we anticipate that there will be
contributions to the conductance due to the Andreev reflec-
A range of experimental investigations have indicated thation of quasiparticles from thiecal superconductivity. How-
underdoped high-temperature superconductdfBSCS ex-  €ver, owing to the phase sensitivity of the Andreev reflection
hibit intriguing properties at temperaturabovethe super- pfOC_esszyz any spatial variation in the phase of the supercon-
conducting transition temperatuf®,. Most notably, these ducting order parameter over the junction would tend to
materials show a strong suppression in the Sing|e_partiC|gause(d|ffract|onl|ke) interference of the quasiparticle-hole

electronic spectral weight at low energies, even at temperd¥aves that have been Andreev reflected from the junction,
tures far aboveT,,'™> a property referred to as the and thereby diminish the associated contribution to the con-

pseudogapA number of scenarios have been proposed ggluctance.

. a1 : Now suppose that the normal contact in a normal-to-
account for this loss of spectral weidht,' several of which pseudogap junction has a characteristic linear dimensidin

L_nvoke the .nOF'O?hthat remnants O:; sutperco?_(gélqtmg t(;]ortrelal-_ is smaller than the characteristic phase-phase correlation
Ions Teémain n the honsuperconducting state, €., tha (i.e., intervortex length &, (e.g., the smaller contact in Fig.
paring 1S e_stabllshed locally but that it lacks the Io_ng-rangel) then, at any instant, rather little phase variation would be
coherence irphasenecessary for true superconductivity. —  oyhacted over the contact and the Andreev contribution to
To make progress with understanding the nature of thgng conductance should be barely diminished. Howevar, if
pseudogap regime, having experimental access tefiagal s sypstantially larger thag, (e.g., the larger contact in Fig.
structureof the correlated electronic state is likely to be of 1) then considerable phase variation is expected over the
considerable valu&** The aim of the present paper is t0 contact, and the Andreev contribution to the conductance is
identify one possible scheme, involving low-voltage mesosiikely to be strongly suppressed. Measurements made using a
copic conductance measurements, for probing this structuriginge of mesoscopic contact siZethus have the capability
experimentally, and to describe this scheme within the conef providing a direct probe of the spatial correlations of the
text of a simple theoretical model. phase of the superconducting order parameter at various tem-
The basic idea is this. Let us adopt as a working hypothperatures within the pseudogap regime.
esis the picture of the pseudogap regime in which supercon- Let us emphasize that the concept of Andreev interferom-
ductivity is established locally, but in which the presence ancetry is by no means new; indeed, several groups have con-
motion of vortices in the superconducting order parametesidered  this concept both  theoreticdfly and
cause the phase of the superconducting order parameter to &eperimentally** However, to the best of our knowledge this
randomized beyond certain correlation length and timenterferometry has primarily been considered in contexts in
scales™® The effects of such phase fluctuations on the singlewhich reflection is from a truly superconducting region
particle properties of underdoped cuprates have been exrather than from a pseudogap regioand in settings in
plored in Refs. 16,17. Now, the low-voltage conductance ofwhich the phase has an average value that varies in a rela-
a normal-to-superconducting junction includes contributiongively simple way in spacésuch as on either side of a Jo-
associated with the Andreev reflection of quasiparticles fronsephson junction Here, we are considering a setting in
the superconducting condensétee, for example, Refs. 18— which the interferometry is being used as a probe of the
20). What about the low-voltage conductance of a normal-superconducting fluctuations.
to-pseudogap junction? Given the picture of the pseudogap It should be mentioned that in recent work Clesial?®
regime outlined above, and assuming that tunneling througbonsidered the issue of whether or not the zero-bias tunnel-
the junction occurs on a time scale faster than the time scaliag conductance pedkwould survive at temperatures above
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side ats and on the pseudogap side ratWe choose the
interface to be in the plane=0 (where{x,y,z} are Carte-
\ / / e / / sian coordinates angk, e, ,e,} are the corresponding basis
) vectorg and, accordingly, decompose vectors such asdr
into components paralldle.g., o) and perpendiculate.g.,
\ \ / \x / \ s,e,) to the interface so thas=o+s,e, andr=p+r,e,.
This choice, together with the assumption that tunneling only
occurs locally at the interface leads us to assert that the tun-
/ / / \ / neling matrix elements, ¢ are given by
tr s=t0ad(s,) 6(r,) 6o p), (2.2
\ \ / / where a is a microscopic length scale characterizing the
thickness of the “active” layer for tunneling of particles and
to is the typical energy scale for this process.
\ / / \ \ & Next, we compute the curremf{V) as a function of the
L ) voltageV. To do this, we consider the expectation value of
the tunneling current operatpr-eQy,Ht]/i%, where—e is
\ \ l \‘ \ & the electron charge:
FIG. 1. Schematic depiction of an instantaneous configuration of R~ PdS degs(tqud:,ocw_t:{,scl,cdw)'
the superconducting phase in the pseudogap &atews. The two 2.3
shades of gray indicate two possilffermal-statgcontact areas on
the pseudogapii.e., whitd substrate. Whereas the smallé®., it regpect to the full Hamiltonian for the system, ig.,
darke) contact abuts a region of nearly uniform phase, the larger_ Hy+Hpt+Hy, where Hyp is the Hamiltonian for the
(i.e., lightey contact exhibits regions of considerably differing : .
phase. normal/pseuc_iogap side a_lﬁ_deQN is th_e charge operator for
the normal side. In fact, it is convenient to obta{v) per-
. . . . turbatively in the tunneling amplitudg,a by applying the
Te. This work involves applying the BTK technicfeto the Matsubara technlque to the imaginary-time dependent tun-
physmal picture of the pseudogap regime explored, e.g.,
Refs. 16,17. It amounts to a computation of the conductanc@ellng currentl(rl) The lowest-order term, which is of
of a normal-to-superconductor interface for a d-wave superorder“o""| represents the norméle. single-particlg cur-
conductor in a uniform supercurrent-carrying state, this conf€nt- This contribution is suppressed at low voltages due to
ductance then being averaged over a Gaussian distribution 1€ Preésence of a gap at low energies on the pseudogap side.
uniform supercurrentgin order to model the pseudogap The next-order contribution tb which is of fourth order in
statg. This yields a conductance dependent upon the statide@, iS given by
tical distribution of local values of the supercurrent arising

from varying vortex locations. In contrast, the present work
focuses on the spatial correlations of the phase in thel(rl)———|toa|4 Z H d p]f d7,d73d 7y
pseudogap regime and, specifically, how such correlations
may be accessed experimentall
Y P v (T d! L, (r)d] (720, 4 (7, 0 (7))
Il. TUNNELING CURRENT FOR A NORMAL-TO- ><<T7'Cplv0'1(Tl)cﬂz702(7-2)(:11;3,03(73)0;4,04( 7))n

PSEUDOGAP JUNCTION
) ] ) ><e—ia)(s(7'2+7'3+7'4)e—i9(7'1+TZ—’T3—’T4) (24)
We now illustrate the ideas of Sec. | by computing the '

conductance of a normal-to-pseudogap junction within the where (- - - )pyy indicates an equilibrium expectation value

tunneling formalism, and show how this conductance de? ith respect tod and 8 measures the inverse tempera-
pends on the pseudogap phase-phase correlation function. 7o P PIN: P

this end, we adopt as the tunneling Hamiltonkipn (Ref. 27 ure. Operators such &s,(r) [or ds,(7)] are interaction-

Ko Ko7 KoT Ko
between a normal stat®) and a pseudogap state): wﬁgﬂ;ngiﬂi?fN és ?oro EE:H Pi M(chp)e_ ngrée,uN (2r

up) is the chemical potential on the norm@ar pseudogap
H.= 2 f d3rf d3s(tr‘sd,T]Ucw+tﬁ"sc;rygdr,g), side, andQy (or Qp) is the charge operator for the normal
o= IR N 2.1) (or pseudogapside. The physical curren(V) is given by

' the imaginary part of (;) after making the following ana-
where the positiors lies on the normal side of the junction Iytical continuationsiws—i0", iQ—eV (i.e., the voltage
and the posmorl lies on the pseudogap side. The operatorsacross the junctionand —ixr,—t (i.e., the tlme
Cs, (OF c ») andd, , (or d ,) respectively annihilatéor To apply Eq.(2.4) to the setting at hand namely, one side
create quaS|part|cIes with spln projectiost on the normal of the junction being normal and the other being in the
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pseudogap regime, we shall need to evaluate the two two-

particle Green function factors that feature in it, one for the

normal side and one for the pseudogap side. For the normal

side, we assume that the corresponding two-particle Green | 2/’\3 4
function is factorizable into two single-particle Green func-

tions, i.e., u U

(TiCp, +(12)Cp, (T2)Ch _(T3)Ch (74N,

P

FIG. 2. Diagram depicting the leading-ord@n tunneling am-
=GN(py,ps; 71— 7)) GNPy, p3;To— 73), (2.5 plitude) phase-sensitive contribution to the current.

N . r — T ’ H H . . o
whereG™(p,p’; 7= 7')=(T.C, (7)€, (7)) is the single-  contributions are suppressed at low voltages, and thus it is
particle Green function on the normal side. On the othedequate to take for the current
hand, for the pseudogap side we adopt a model in which the

pseudogap state is a superconductor that is “disordered” by 2 4

a static pattern of vortices and characterized bysttic — T(7)=— —|tqal* f 11 dzpj @l (4(p1) + B(p2) — d(p3) — ¢(p4))/2
phase-phase correlator. We do not require information con- B Aj=1

cerning the dynamic phase-phase correlation function be- o

cause we are assuming that the Andreev reflection process is > GN o tiotiQ

rapid, compared with the time needed for vortices to substan- n;x (P2.pgilen g )

tially rearrange the phase structure. To support this assump- N . . ,

tion, let us note that the time scale associated with Andreev XGH(py,ps; —i0n—3iwstiQ)

reflec_tlon is of _orderq_-AR~§a/vF, where_vF is the I_:erm| X fo(pr—paiion) folpa—paiion+2iws), 2.9
velocity of the incoming electron ang, is the amplitude-

fluctuation correlation lengtfi.e., the Cooper-pair sizen  where the limit.4 indicates that the interface integrals are
the pseudogap side. Then, by using the estimates constrained to the area of the contact between the N and P
~10" cm/s and¢,~1 nm (typical for a HTSQ we find that  regions. Equatiori2.8) may be expressed diagrammatically,
Tar~10"**s. The experiments of Corscet al®® indicate  as shown in Fig. 2, where one-arrow lines denote normal
that the vortex-pattern rearrangement time corresponds tGreen functions, two-arrow lines denote anomalous Green
frequencies in the terahertz range., is of order 10° s) so  functions(and the straight line denotes the interfaddfe see
that, at least as a starting point, we may neglect the dynamia®at this contribution to the current involves the correlation
of the vortices. Thus, we assume that quasiparticles incidergf an electron and a hole propagating on the normal side,
from the normal side effectively encounter, and are Andreeynediated by the static random pair-potential on the
reflected by, a static pair potential that has a nonzero amplisseudogap side of the junction.

tude (except at the vortex cores, which are smaltd a spa- Equation(2.8), which represents the leading contribution
tially random phase. With this in mind, we characterize thedue to Andreev reflection at an interface, may be consider-
pseudogap side by the anomalous Green function ably simplified in situations in whicl§,<é&, (i.e., the phase
b, , , order which we are interested in probing via Andreev reflec-
Fo(rr's7,7)=(T,d; [ (nd,/ 1(7))p tion persists over length scales much larger than the pair

(el e e G HN2 (2 size), which is not only the case for the usual NS interface
=fo(r=rir=1")e . (29 setting but also for the present NP setting. To support this

function f, is given by the value it takes in a conventional €x@mining the results of the _Corsenal.experimentségon the
superconductoi® i.e., high-frequency ac conductivity of Bsr,CaCyOg., 5.7 Ac-
cording to the analysis of Corscet al, in the pseudogap

Bk 1 2 Ay state the ratio of to £, is related to the vortex diffusion
) — - ionTalk-rin| X - P
fo(r;7) f @) B a2 e'“n’e (ZEk> time 7 via
¢ 2 ™y
_r 1) 2.7 <—¢ == 2.9
iw,+Er  lw,—Eg &a T

Here,E, [= &2+ AZ, with &= (#2k?%2m)— u] is the exci- Where(), is a parameter determined by Corseral. to be
tation energy in the pseudogap material andis the gap 1.14x10"s™. From Fig. 4 of Corsoret al, we see that at
amplitude. The Matsubara frequencies are defined to be T=75 K, 7~10"*?s, so that&}/£5~ 20.

w,=(2n+1)7/pB for integern. For the sake of simplicity, The significance of the separation of the length scéles
we now focus on the case sfwave pairing and thus set andé¢, in the present context follows from the fact that the
A=A 3! We approximate the two-particle Green function functionf, has spatial rangé&,. Thus, in Eq(2.8) the spatial

on the P side in Eq2.4) by making a Gorkov factorization integrations over the coordinatép,}?_, may be simplified
into the anomalous Green functidi and its conjugate. In  becausef, varies rather more rapidly in space than do the
principle, there will also be a contribution associated withother factors in the integrand. This allows us to make the
factorization into normal Green functions. However, theseapproximation
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wheren(e)=[exp(Be)+1] ! is the Fermi distribution func-
fo(p.iw)=~53(p) J d?p'fo(p’ i) tion and ¥p [=m/(2mh%ks) "1 with ke being the Fermi
A wavevectof is the one-dimensional density of states on the P
© dk, . side.
~8%(p) J ook iw), (210
Ill. CASE OF CLEAN NORMAL-METAL CONTACT
wheref, is the (three-dimensionalFourier transform off,
and k, is the momentum component perpendicular to the
interface. By using this approximation, we obtain In this section we pursue the evaluation of E2.14) for
the case of a normal contact that is perfectly clean, in the

A. General considerations

~ 2e - . B sense that the spectral functiéft (with the superscript C
I(71)=— §|toa|4n:2_oc fAdzplfAdzpze'(¢(pl) 9(p2)) standing for cleanhas the form appropriate for a pure metal:
XGN(pl,pz;iwn+iw5+iQ) Ac(p;€)=2775(3)(6p—6), (31)
XGN(py,po;—iwy—3iws+iQ) in which epEpIZ/Zm—M.. The (three-dimensional Fourier
transform of this quantity is given by
xf dsz (K,e, i )J dk;f (K.e,iw,+2iws)
57 To(K€; 1wy 57 TolK; €, lwy lwgs). d3 ) ,
2mh 2mh A= [ P Ape I, (3.2
(2.1 (27h)
Having derived Eq.2.11), an equation applicable to any in{\2mA ~2(e+ ) |r -1
given realization of the phase fielfi p) on the P side of the _m sin{ v2m# e+ pu)|r—r |}_ (3.2b
interface, we conclude the present section by averaging this h2m [r—r’|

current over an as-yet-unspecified distribution of phas
fields. As discussed above, the time scale for the tunnelin

rocess is shorter than the time scale for phase rearran )
P P 9Boltzmann’s constaptand low voltagegi.e., eV<A),* we

ment. Thus, it is appropriate to proceed as we have, by fir btai on for the | | d
computing the current for a fixed realization of the phase0 taln an equation for the low-voltage con uctgnce as a
field, and then to construct the time-averaged current, avefunctional of the pseudogap phase-phase correlation function

y inserting this expression into ER.14), and limiting our
ttention to low temperaturdse., kgT<<eV, with kg being

aged over times longer than the phase rearrangement timq,(v) &2t keal
by averaging the current over an appropriéitethis case, "~ —— | OO 2
equilibrium) distribution of phase fields. Denoting such av- \Y Voot h|dmeg F
eraging by[---], and introducing the appropriate phase- )
phase correlator XJ dzle’ i, g(pl_pz)SInsz|p1—p2|
g(pr— py)=[€ ¢ Pe 197, (2.12 A A |p1—pol?
(3.3

we arrive at a formula for the time-averaged curidtr;)],
i.e., Eg. (2.1) but with the phase factors exp(p;)
— ¢(py)) replaced byg(p;— p,). For convenience, we ex-
press the normal-side Green function in terms the corre- The main conclusion of Sec. lll A is that the contribution
sponding spectral functioA: of Andreev reflection to the tunneling current is sensitive to
spatial inhomogeneity of the superconducting phase, such as
N . [* de A(py,p2;e) is proposed to exist in the pseudogap state. For the purposes
G (p1.pziiwn)= Jfocﬁ iw,—e (213 of illustration, we now examine a specific example of how
the current enhancement due to Andreev reflection is increas-
Then we may perform the integrations ovgrandk; (by ingly suppressed, with increasing area, due to destructive in-
converting them to energy integralsis well as the summa- terference. In this example, we assume that the phase-phase
tion over Matsubara frequencies. By performing the neceseorrelations in the pseudogap state are adequately modeled
sary analytic continuations and taking the imaginary part, wehy those associated with the Berezinskil-Kosterlitz-Thouless
obtain an expression for the tunneling curre)) through a  (BKT) theory of the two-dimensionakyY model®*~3° The
mesoscopic interface between a normal metal and a materigdlevance of this theory to the cuprate materigse, e.g.,

B. lllustrative example: BKT correlations

in the pseudogap state: Ref. 7 originates in the fact that their pronounced planar
. character causes the intermediate length-scale electronic
_=r 42 2 2 _ structure to be characterized by two-dimensiokal behav-
V=73 [toal VPJAd pled P29(P1=p2) ior, which is expected to cross over to three-dimensidhél
behavior only very close to the transition. In order to com-
2eV+u A2 pute the current for this BKT scenario, we need a form for
X fﬂ dem{n(e—Ze\l)—n(e)} g(p). On length scales short compared with the phase-phase

correlation lengthé,, the functiong(p) approaches unity;
XA(pL,p2;€)A(pr,p2;2eV—¢), (2.19 on length-scales long compared wigfy , it exhibits expo-
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nential behaviof® As we are only seeking an illustrative R
computation of the current, the exact details of this crossover T
are unimportant, and thus we adopt the form 0.8
g(p)=eloc, (3.4 06
and we take the interface to have the shape of a disk of 0.4
radiusL. Inserting Eq.(3.4) into Eq. (3.3), we see that the 02
low-voltage Andreev conductance per unit area through the '
interface has the form
0.0 0.5 1.0 1.5 2.0
(V) e e 550 Dimensionless contact size, L/iq)
L2V I A Al ' FIG. 3. 1-f (i.e., the departure of the dimensionless Andreev
V-0t . . _ .
conductance per unit area from its large-area )imi a function of
2 k 2t 1cal? the dimensionless size of the interfack,,, for the case okgé,
= O Xin(1+4k2%2), (3.5 =100 (computed numerically For L much smaller tharg,, the
fi 2 |4mee ¢ zero-voltage conductance per unit area is much smaller than its
asymptotic value.
2
fo(keéy,LIEy)= —Zln(1+4k2§2) cussed Sec. |, a series of mesoscopic conductance measure-
& Foé ments involving a range of contact sizes is expected to be
S|n2kFL|X1 X, rather sensitive to the characteristic length scale of phase
dle d2 — correlations in the pseudogap state.
X1 —Xo|
e xixal(L/gy). (3.50 IV. CASE OF DISORDERED NORMAL-METAL CONTACT

Here, the subscript 1 indicates that the integrals are taken A. General considerations

over disks of unit radius. The prefactdi is the limiting In Sec. Ill we investigated the conductance of a mesos-
value of the conductance per unit area in the limit of largecopic normal metal-to-pseudogap junction for the case of a
interface area[Note thatI'c vanishes for the case of no perfectly clean normal metal. We now address the issue of
phase coherendge., keé;=0).] the sensitivity of the main result.e., that this conductance
One of our primary concerns is how the varying of thecontains information regarding the spatial extent of the
interface size would provide information regarding the strucpseudogap-side phase correlaticiasthe assumption that the
ture of the phase correlations; this information is containectontact is a perfectly clean metilSpecifically, we examine
in the functionf, which depends only on the dimensionlesshow Egq.(3.3) is modified by the presence of disorder in the
quantitieskeé, and L/&,. For generic values of its argu- normal-metal contact. As we shall see, in the presence of
ments, the form of - can be determined only via numerical disorder the most significant contribution to the conductance
integration; however, its behavior can be determined in variis associated with so-called Cooperon diagrams, familiar
ous physically relevant asymptotic limits. To begin with, let from the theory of the weak-localization corrections to the
us assume that the phase correlations persist over lengtonductivity of a disordered met3.
scales that are long compared with the Fermi wavelength on As is conventional, we take the disorder to be due to
the normal siddi.e., keé,>1), and let us consider varymg uncorrelated pointlike impurities, which scatter the electrons
the interface size. For small interface sizé®., kg <L elastically. Moreover, we assume that the dephasing length
<¢,), fc increases logarithmically withL (e, fc Ly is long, compared to botlj, and the mean free path
~InkeL/Inke£,4). In the opposite regime of large interface (which characterizes the strength of the disorder and is re-
sizes, we expect that Andreev reflection will occur from in-lated to the scattering time via | =vg7). Although we are
dependent “domains” of uniform phasgo that, e.g., the focusmg on situations in which, is larger than the interface
doubling of the area should double the conductanoceleed, size2® so that one expects substantial sample-to-sample fluc-

forL>¢,, tuations(which may in fact be interesting to studyve shall
restrict our attention solely to the disorder average of the
25?15 £y current. Then, averaging the current in E2.14) over con-
fe~1- ( (3.6)  figurations of the potential scatterers on the normal side, an
(1+ 4k2 §¢)In(1+4k §¢)

averaging that we indicate via - - )45, We arrive at

for any value ofkg&, . Note the logarithmic dependence of .
fc (and hence the current per unit area the contact sizk, e 42 2 2 _
V\fhich is appropriate given the nonclassical nature of this<|( )>d's_h 8 [toal VPJ d leAd P29(p1=p2)
mesoscopic contribution to the conductafte.

To study the behavior of for intermediate values df, 2eVip
we perform the integrals in E43.50 numerically. In Fig. 3, X fﬂ de m
we show I-f¢ as a function ofL/§, for the case of long-
range phase correlationg.e., ke§,=100). Thus, as dis-

AZ

{n(e—2eV)—n(e)}

X<AD(pl,p2;E)AD(pl,pz;ZeV— 6)>dis: (41)
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where the superscript D refers to the disordered case. The X
disorder-averaged  product of spectral functions
(AP(py,p,;€)AP(p1,p,;2eV—€)) s contains contributions
that extend over length scalés, — p,| much larger than.
These Cooperon contributions provide the mechanism for the
transmission of the phase-sensitive information that would
be probed in Andreev interferometry experiments involving
a disordered normal-metal contact.

B. Semiclassical picture

Before deriving our result for the contribution of the
Cooperon tdl(V))gs, We pause to motivate physically why
this particular contribution is significant. In the context of . . . : . -

. L FIG. 4. Schematic depiction of two semiclassical trajectories in
weak localization, the Cooperon contribution to the conduc-

t . fully pictured in t f tructive interf which an electron leaves positionin the normal regioni{), un-
ance Is useiully pictured in terms of constructive inter er'dergoes multiple elastic scattering events, then undergoes Andreev

enceiof pa.IrS O,f paths involving the 'Scatterlng of eleCtronsreflection at the NS interfaadorizontal ling, and then returns te
from impurities in reverse ordéf. This interference tends to as a hole via the same scatterers but in reverse order(dashed

“localize” electrons, thus causing a reduction in conductiv- jines represent electraffiole) trajectories; crosses represent impu-
ity. In the present context, however, the origin of the Coop-ty scattering potentials.
eron is slightly different. To see this, consider the amplitude

AL for an electron at positiox in the normal metal to Thus, one sees that the most significant contribution to Eq.
scatter from a sequence of impurities labeled by the index (4.2) is given approximately by
to Andreev reflect at the positianon the interface, to then

scatter from the sequence of impurities labeedind finally P(x)~ S @@ o)

to return to the positiox. Then, the probability for an elec- '

tron leavingx and reflecting from the interface to returnxo

as a hole is given by the squared modulus of the sum of sucand hence thatP(x) is sensitive to the nature of the

amplitudes, i.e., pseudogap phase-phase correlations, a sensitivity similar to
that embodied in Eq(3.3).

(4.9

r,r’

2 AL

afr

P(x)= . . .
C. Microscopic calculation

2 _ _
:EE %/(Aﬁ“)*Afi;‘. (4.2
afr a r

. . Ba N The explicit computation of the contribution of the Coop-
As is well known, the amplitudé;” depends sensitively on  eron directly follows the usual analysis found in the context
the SpeCIfIC realization of the d|50rder; thUS, the r|ght'haanf weak |Oca|ization; fo”owing Ramméa we find that the

side of Eq.(4.2) contains many terms that are disorder- disorder-averaged product of spectral functions has the form
dependent complex numbers. These contribution® (®)

average to zero upon disorder averaging. However, amongst (AP(X,X",€)AP(X,X", € ) }gis

the collection of amplitudes there is a special subset describ-

ing processes in which the hole, as it returns from the inter- 2 d*Q 10 (x—x') ,
face tox, does so via the same collection of impurities vis- :7VNJ PRI {C(Qe—€)
ited by the electron on the outbound segment of the (2mh)

trajectory but in the reverse order. If we denote the reverse of +C(Q,e —e)l, (4.5

the sequence of impuritie8 by the sequencg then this _
special subset consists of the amplitudés’; these ampli- Where the Cooperon propagatoiC(Q,w)=(—iw/A
tudes have the form akal numbers, regardless of the spe- +DQ?%~?)~*, the diffusion constar=v¢/3 (in three di-
cific locations of the impurities, except for a factor due to themensiong and v[ =kem/(27°4%)] is the normal-side den-
phase shift associated with Andreev reflection. To see thissity of states. Inserting Eq4.9) into Eq. (4.1) leads to the
consider, e.g., the left-hand pair of patletectron and hole  expression

in Fig. 4. The electron pattiull line) originates ak, scatters

from impurities at positions 1, 2, and 3, and then Andreev tokra 4772k,3: ) 5

reflects as a hole. The hole then propagates baock scat- (1(V)as=e 4mer| 2m Ld PlLd P29(p1=p2)
tering from the impurities at positions 3, 2, and 1 before

returning to the positiom. The dynamical phase acquired by 2eV+puy

the electron as it propagates to the interface is canceled by a X Jl de{n(e—2eV)—n(e)}
phase of the opposite sign acquired by the hole. Thus, the -

amplitude for an electron atto return as a hole atdepends A2

only on the phase of the condensate :at Xm{C[Pl—Pz,Z(EV— €)]

A~ gl 400, (4.3 +Clp1—p,.2(e—eV)]}, (4.6
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where C(p, €) is the (three-dimensionalFourier transform Lo
of C(Q,e€). T 08
To analyze(l (V))qis Wwe make two further simplifying as- ‘
sumptions. First, as in the clean case, we limit our attention 0.6
to low temperature$i.e., kgT<eV), and thus we obtain
0.4
eltokeal® 7k 2ev A2
((V)gis~ 7| 7= —kﬁf de5—— 02
f|4meg] 4mD "o A%—(eV—e¢)?
_ 0 2 4 6 8 10
XJ’ dzplf dzng(pl Pz) Dimensionless contact size, L/E,m
A A |p1— o
FIG. 5. 1-f; (i.e., the departure of the dimensionless Andreev
VD) Tev—cllp. — ; . - |
x @ V(#ED) " *[eV—ellpy—p,| conductance per unit area from its large-area )imit a function of
the dimensionless size of the interfdck, for the case of a disor-
x cogV(AD) YeV—¢||p.—pl}, (4.7  dered normal-metal conta¢tomputed numerically For L much

. - . smaller thar¢,, , the zero-voltage conductance per unit area is much
where we have inserted the explicit real-space expression f%r €y d P

. . ller than i i lue.
the Cooperon. Second, by making the restriction to low volt- maler than its asymptotic value
ages(i.e., eV<A),*? we may in Eq.(4.7) replaceA?/[A?

—(eV—¢€)?] by 1. Furthermore, in the presence of disorder fo=1+ S L 2k — 2k 4.1
: D 1 1 (4.10
one has the natural length scalg=AD/eV. At suffi- L &y &y

ciently low voltages and small interface sizés, will be
much larger than typical values g, — p,|, so that one may
expand to lowest order ib/L,, thus obtaining

wherel; is a modified Bessel function ard, is a modified
Struve function. The asymptotic behavior fof is linear for
smallL [i.e., fp~(8/3m)(L/&y) for L/£,<1]; for largeL it
approaches unity as an inverse power loffi.e., fp~1

62 tokFa 4 7Tk|: . .
(V) gie~—V|——— f d?p f d%p>9(p1—po) —(2¢,/wL) for L/é,>1]. In Fig. 5 we show how this func-
< Jais h|Amer L%LV A Tt v tion crosses over between these two limits. As with the case
of the clean contact, the conductance shows marked sensitiv-
X[ Ly +O(1)] 4.8 ity to the phase-phase correlations of the pseudogap state.
|P1_P2| '
whereL = %D/ eg Thus, as found in Sec. Il for the case of V. CONCLUDING REMARKS

a C'?a“ normal metal contact, the Io.w-vo_ltage conductapce_of In this paper we have proposed and explored theoretically
a disordered metal-to-pseudogap junction also contains inpe hossibility of using Andreev interferometry to probe the
formation regarding the pseudogap phase-phase correlatiQatia| structure of the phase correlations in the pseudogap

function. state of the cuprate superconductors. The viability of this
_ _ technique rests on the sensitivity of the tunneling current
D. lllustrative example: BKT correlations across mesoscopic normal-to-pseudogap junctions to spatial

In this section we examine the area dependence of theariations in the local superconducting order in the
low-temperature and low-voltage conductance of a disorPSeudogap state, as well as the possibility of using junctions
dered normal metal-to-pseudogap junction for the case dfaving arange of areas. The picture of the pseudogap state to
BKT correlations. As in Sec. Ill, we assume that phase corWhich our approach directly applies is one in which phase
relations decay in an exponential fashion, consistent with thgorrelations extend over length scales that are considerably
BKT scenario. Our starting point is thus E@.8), together larger than the characteristic dimension of a charge-carrier
with the model of phase correlations given by Eg4). By  Pair. If this is not the case then the intervortex spacing be-
considering th&/—0" behavior of Eq(4.8) we arrive at the COmMes comparable to the vortex core size, a substantial frac-

low-temperature conductance per unit affea the case of an tion of the electrons tunneling from the contact encounter
interface having the shape of a disk of radius vortex cores, and our formalism would have to be extended
to account for the associated variation of the amplitude of the

(V) )is supercondl_Jctir_lg orde_r parameter.
— ~I'pfp(L/&y), (4.939 By considering a simple tunneling model, we have estab-
LV, e lished a relationship between the tunneling current and the
equilibrium phase-phase correlator characterizing the
e? [tokra 42772|<F§¢ pseudogap state. We have considered the cases in which the
Tozg Imed 2 (49D  normal region(i.e., the contagtis either a clean or a disor-
F

dered metal. In both cases, we have assumed that phase co-
(L herence length for quasiparticles on thermal side is
(= 1 /L 2 2 e Pamxal(L/gy) 4.9 greater than the contact size. If this condition is not met,
o2 &) 11 X1 1 X2 [X;—X| 99 then, throughout our results, the contact size must be re-
placed by the dephasing length.
By evaluating the integrals in E¢4.90, we obtain Up to this point we have not paid any attention to the fact
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that the pairing state is, in all likelihood, d wave. Assuming Let us note, in passing, that we expect the results in the
that this is indeed the case, there are certain additional fagresent paper to be at leagialitativelyvalid for regimes in
tors that may complicate the task of conclusively extractingwhich the tunneling barrier is small and, hence, the Andreev
information via Andreev interferometry. Specifically, these cyrrent through the interface is large. In such regimes, the
complications areti) the presence of low-lying quasiparticle ¢qninution to the current due to Andreev reflection will, in

states near the nodes of the gap; dngd Andreev bound - : :
state<® localized at the surface,gar‘i)sindg ﬁom the sign chang act, be much larger than the contribution from quasiparticle

in the pair potential. Both complications lead to nonzero qua_unnelmg. However, to arrive at a quantitative theory for this
siparticle contributions to the current, and may obscure th€aS€ one would have to extend the approach taken here by
contribution due to Andreev reflection. We propose twod0ing beyond simple perturbation theory in the normal-to-
methods to circumvent these difficultie§) tunneling into  pseudogap tunneling amplitude.

the antinodal direction, so as to minimize the magnitude of To illustrate this Andreev interferometry proposal, we
the contributions associated with the abovementioned conhave applied our general results to a simple model of the
plications and(ii) separating the quasiparticle contribution pseudogap phase-phase correlations, which is intended to

from the Andreev contribution via their characteristic tem-__. " . : :
perature dependences. Meth@drelies on the notion that by mimic the BKT correlations relevant to certain proposed pic-

choosing an experimental geometry such that the antinodd¥res of the pseudogap state. Our considerations suggest that
direction is normal to the plane of the interface, electrongneasurements of the low-voltage conductance of mesoscopic
incident from the normal side will tunnel into a particular junctions of varying areas between normal-state and
“cone” of momentum states in the pseudogap material.pseudogap-state regions would reveal information about the

Hence, the COUp|ing to n0da| states can be minimized. Furphase_phase correlations in the pseudogap state.
thermore, with this geometry, quasiparticle states that reflect
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